Kitabahas bagaimana menentukan persamaan garis yang melalui dua titik (x 1,y 1) dan (x 2,y 2). Rumus dasarnya sama dengan rumus di atas, yaitu y-y 1 =m(x-x 1). Gradien (m) dapat kita peroleh dari rumus gradien garis yang melalui dua titik. Kalau m pada rumus y-y 1 =m(x-x 1) kita ganti, akan diperoleh bentuk berikut.

Persamaan garis lurus menyatakan sebuah garis lurus dalam bidang koordinat ke dalam sebuah persamaan. Persamaan garis lurus melalui 2 titik dapat dicari atau ditentukan persamaan garisnya. Persamaan garis lurus pada bidang koordinat secara umum dinyatakan melalui bentuk persamaan y = mx + c atau ax + by + c = 0. Ada beberapa cara yang dapat digunakan untuk menentukan persamaan garis lurus. Cara menentukan persamaan garis lurus bergantung pada informasi yang diberikan pada soal. Salah satu bentuk soal dalam persamaan garis lurus adalah menentukan persamaan garis lurus jika diketahui dua titik yang dilalui garis. Bagaimana cara menentukan persamaan garis lurus jika diketahui dua titik? Melalui halaman ini, sobat idschool dapat mencari tahu caranya. Simak penjelasan lebih lengkapnya melalui ulasan di bawah. Table of Contents Rumus Persamaan Garis Lurus Melalui 2 Titik Contoh Soal Menentukan Persamaan Garis Melalui Dua Titik dan Pembahasannya Contoh 1 – Menentukan Persamaan Garis Lurus Melalui 2 Titik Contoh 2 – Menentukan Persamaan Garis Lurus Sebuah garis lurus diketahui melalui dua titik yaitu -6, 0 dan 8, 0 seperti yang ditunjukkan seperti gambar garis lurus di atas. Bagaimana persamaan yang sesuai dengan garis lurus yang melalui 2 titik tersebut? Agar dapat menentukan persamaan garis lurus yang melalui 2 titik, sobat idschool membutuhkan bagaimana rumus umum garis lurus yang melalui dua titik. Misalkan diberikan sebuah garis lurus yang diketahui melalui titik x1, y1 dan x2, y2. Cara untuk menentukan persaman garis lurus tersebut dapat melalui persamaan yang dinyatakan dalam rumus persamaan garis lurus melalui 2 titik berikut. Dengan rumus yang dapat digunakan untuk menentukan persamaan garis lurus melalui 2 titik di atas, sobat idschool dapat menentukan persamaan garis lurus melalui 2 titik pada awal pembahasan. Lihat kembali gambar sebuah garis lurus yang diberikan sebelumnya. Baca Juga Cara Mencari Persamaan Garis yang Saling Tegak Lurus Diketahui bahwa persamaan garis lurus tersebut melalui dua titik yaitu titik 0,8 dan – 6, 0. Sehingga untuk mendapatkan persamaan garis lurus seperti pada gambar di atas, sobat idschool hanya perlu substitusi nilai dua titik tersebut sebagai x1, y1 dan x2, y2 pada persamaan garis lurus yang melalui dua titik. Simak contoh cara menentukan persamaan garis lurus melalui 2 titik seperti cara berikut. Menentukan persamaan garis lurus yang melalui titik 0,8 dan –6, 0 Jadi, persamaan garis lurus tersebut melalui titik 0,8 dan – 6, 0 adalah 4x – 3y + 24 = 0. Baca Juga Cara Menyelesaikan Sistem Persamaan Linear Dua Variabel SPLDV Contoh Soal Menentukan Persamaan Garis Melalui Dua Titik dan Pembahasannya Beberapa contoh soal di bawah dapat sobat idschool gunakan untuk menambah pemahaman bahasan di atas. Setiap contoh soal yang diberikan dilengkapi dengan pembahasannya. Sobat idschool dapat menggunakan pembahasan tersebut sebagai tolak ukur keberhasilan mengerjakan soal. Selamat Berlatih! Contoh 1 – Menentukan Persamaan Garis Lurus Melalui 2 Titik Perhatikan gambar di bawah! Persamaan garis yang sesuai dengan gambar di atas adalah …. A. y = 2x + 2 B. y = 2x – 2 C. y = –2x + 2 D. y = –2x – 2 Pembahasan Perhatikan bahwa persamaan garis yang diberikan pada soal melalui dua titik yaitu 0, 2 dan 2, 6. Sehingga persamaan garis yang sesuai gambar pada soal. Jadi, persamaan garis yang sesuai dengan gambar di atas adalah y = 2x + 2. Jawaban A Baca Juga Cara Menggambar Garis Lurus dari Sebuah Persamaan Contoh 2 – Menentukan Persamaan Garis Lurus Persamaan garis yang melalui titik –2, 4 dan 6, 3 adalah ….A. x + 8y + 30 = 0B. x + 8y – 30 = 0C. x – 8y + 30 = 0D. x – 8y – 30 = 0 Pembahasan Titik yang dilalui garis lurus adalah Titik Pertama – 2, 4 → x1 = –2 dan y1 = 4Titik Kedua 6, 3 → x2 = 6 dan y2 = 3 Menentukan persamaan garis yang melalui titik – 2, 4 dan 6, 3y – 4/3 – 4 = x – –2/6 – –2y – 4/–1 = x + 2/88y – 4 = –1x + 28y – 32 = –x – 2x + 8y – 32 + 2 = 0x + 8y – 30 = 0 Jadi, persamaan garis yang melalui titik – 2, 4 dan 6, 3 adalah x + 8y – 30 = 0. Jawaban B Demikianlah tadi ulasan materi cara menentukan persamaan garis melalui 2 titik. Terimakasih sudah mengunjungi idschooldotnet, semoga bermanfaat. Baca Juga Persamaan Garis Lurus
Kemudian dari dua titik koordinat tersebut dapat digambarkan garis lurus seperti berikut. b. Seperti sebelumnya, tentukan dahulu nilai x atau y yang memenuhi persamaan x = 2y. Tentukan persamaan garis yang melalui titik P(3, 5) dan memiliki gradien -2. Jawaban : Untuk titik P(3, 5) maka x 1 = 3, y 1 = 5. Dengan menggunakan rumus umum

Pada garis y = mx, m merupakan gradien yang besarnya adalah m=yx . Sekarang, ayo perhatikan garis g pada gambar berikut. Pada gambar tersebut, dari titik A ke titik B terdapat suatu perubahan secara tegak sebesar y2 – y1 dan perubahan secara mendatar sebesar x2 – x1. Ini menunjukkan garis g yang melalui titik Ax1, y1 dan Bx2, y2 memiliki kemiringan atau gradien sebesar m=y2−y1x2−x1. Pemahamanmu tentang gradien dapat digunakan untuk mempelajari topik berikut ini. Pada bagian sebelumnya, kamu telah mengetahui bahwa suatu garis yang melalui titik Ax1, y1 dan Bx2, y2 memiliki gradien m=y2−y1x2−x1 . Pada topik sebelumnya, kamu pun telah mempelajari persamaan garis yang melalui titik x1, y1 dan bergradien madalah y – y1 = mx – x1. Dengan mensubstitusi nilai m ke persamaan tersebut, kamu akan mendapatkan y−y1=y2−y1x2−x1x−x1 ⇔y−y1y2−y1=x−x1x2−x1 Dapat disimpulkan bahwa Contoh Ayo, tentukan persamaan garis yang melalui titik 4, 0 dan 0, -2. Jawab Persamaan garis yang melalui titik 4, 0 dan 0, -2 adalah sebagai berikut. y−0−2−0=x−40−4⇔y−2=x−4−4⇔y=−2−4x−4⇔y=12x−4⇔y=12x−2⇔x−2y−4=0 Jadi, persamaan garis yang melalui titik 4, 0 dan 0, -2 adalah x – 2y – 4 = 0.

Tentukanpersamaan garis yang melalui titik a. A (1, 3) dan bergradien 2 b. C (7, 1) dan bergradien 1/5 c. D (3, 0) dan bergradien -1/2 d. E (-2, -3) dan bergradien -1. Kemudian, gambarlah garis tersebut pada bidang koordinat Cartesius. Berilah nama untuk masing-masing garis tersebut. Penyelesaian:
Kemiringan garis adalah ukuran kecuraman dan arahnya. Ini didefinisikan sebagai perubahan koordinat y ke perubahan koordinat x garis itu. Itu dilambangkan dengan simbol m. Jika dua titik x 1 , y 1 dan x 2 , y 2 dihubungkan oleh garis lurus pada kurva y = fx, kemiringannya ditentukan oleh rasio selisih koordinat y terhadap x- selisih koordinat Bagaimana cara mencari persamaan garis dari dua titik? Bentuk dua titik digunakan untuk mencari persamaan garis yang melalui dua titik. Formulanya diberikan oleh, y – y 1 = m x – x 1 atau di mana, m adalah kemiringan garis, x 1 , y 1 dan x 2 , y 2 adalah dua titik yang dilalui garis, x, y adalah sembarang titik pada garis. Penurunan Pertimbangkan garis dengan dua titik tetap B x 1 , y 1 dan C x 2 , y 2 . Titik lain A x, y adalah sembarang titik pada garis. Karena titik A, B, dan C bersamaan, kemiringan AC harus sama dengan BC. Dengan menggunakan rumus kemiringan yang kita dapatkan, y – y 1 / x – x 1 = y 2 – y 1 / x 2 – x 1 Mengalikan kedua sisi dengan x – x 1 kita dapatkan, Ini mendapatkan rumus untuk bentuk dua titik dari sebuah garis. Contoh Soal Soal 1. Temukan persamaan garis yang melalui titik 2, 4 dan -1, 2. Penyelesaian Kita punya, x 1 , y 1 = 2, 4 x 2 , y 2 = -1, 2 Temukan kemiringan garis. m = 2 – 4/-1 – 2 = -2/-3 = 2/3 Dengan menggunakan bentuk dua titik yang kita dapatkan, y – y 1 = m x – x 1 y – 4 = 2/3 x – 2 3y – 12 = 2 x – 2 3y – 12 = 2x – 4 2x – 3y + 8 = 0 Soal 2. Temukan persamaan garis yang melalui titik 4, 5 dan 3, 1. Penyelesaian Kita punya, x 1 , y 1 = 4, 5 x 2 , y 2 = 3, 1 Temukan kemiringan garis. m = 1 – 5/3 – 4 = -4/-1 = 4 Dengan menggunakan bentuk dua titik yang kita dapatkan, y – y 1 = m x – x 1 y – 5 = 4 x – 4 y – 5 = 4x – 16 4x – y – 11 = 0 Soal 3. Temukan persamaan garis yang melalui titik 2, 1 dan 4, 0. Penyelesaian Kita punya, x 1 , y 1 = 2, 1 x 2 , y 2 = 4, 0 Temukan kemiringan garis. m = 0 – 1/4 – 2 = -1/2 Dengan menggunakan bentuk dua titik yang kita dapatkan, y – y 1 = m x – x 1 y – 1 = -1/2 x – 2 2y – 2 = 2 – x x + 2y – 4 = 0 Soal 4. Temukan titik potong y dari persamaan garis yang melalui titik 3, 5 dan 8, 7. Penyelesaian Kita punya, x 1 , y 1 = 3, 5 x 2 , y 2 = 8, 7 Temukan kemiringan garis. m = 7 – 5/8 – 3 = 2/5 Dengan menggunakan bentuk dua titik yang kita dapatkan, y – y 1 = m x – x 1 y – 5 = 2/5 x – 3 5y – 25 = 2x – 6 2x – 5y + 19 = 0 Letakkan x = 0 untuk mendapatkan perpotongan y. => 2 0 – 5y + 19 = 0 => 5 tahun = 19 => y = 19/5 Soal 5. Temukan titik potong x dari persamaan garis yang melalui titik 4, 8 dan 1, 3. Penyelesaian Kita punya, x 1 , y 1 = 4, 8 x 2 , y 2 = 1, 3 Temukan kemiringan garis. m = 3 – 8/1 – 4 = -5/-3 = 5/3 Dengan menggunakan bentuk dua titik yang kita dapatkan, y – y 1 = m x – x 1 y – 8 = 5/3 x – 4 3y – 24 = 5x – 20 5x – 3y + 4 = 0 Masukkan y = 0 untuk mendapatkan titik potong x. => 5x – 3 0 + 4 = 0 => 5x + 4 = 0 => x = -4/5 Soal 6. Temukan kemiringan garis yang melalui titik 2, 7 dan -4, 5. Penyelesaian Kita punya, x, y = 2, 7 x 1 , y 1 = -4, 5 Dengan menggunakan rumus yang kita dapatkan, y – y 1 = m x – x 1 => 7 – 5 = m 2 – -4 => 2 = m 2 + 4 => 6m = 2 => m = 1/3 Soal 7. Temukan kemiringan garis yang melalui titik 4, -5 dan 6, 7. Penyelesaian Kita punya, x, y = 4, -5 x 1 , y 1 = 6, 7 Dengan menggunakan rumus yang kita dapatkan, y – y 1 = m x – x 1 => -5 – 7 = m 4 – 6 => -12 = m -2 => -2m = -12 => m = 6

02 Sebuah garis g melalui titik A(4, -2). Jika garis g sejajar dengan garis 3x + 2y = 6 maka tentukan persamaan garis g tersebut Jawab 03. Sebuah garis y = 2x + p berpotongan dengan garis y = px - 4q di titik (3, 5). Tentukan nilai p + q = Dua garis g dan h akan berpotongan tegak lurus jika hasil kali kedua gradiennya sama dengan -1.

Setiap garis lurus yang diletakkan pada bidang koordinat Kartesius pasti memiliki suatu properti unik yang disebut sebagai persamaan equation, yaitu suatu ekspresi aljabar dengan dua ruas yang terhubungkan oleh tanda sama dengan =. Persamaan garis lurus linear equation sinonim dengan persamaan linear. Ciri-cirinya adalah setiap variabel yang muncul memiliki pangkat tertinggi 1 satu tanpa memuat perkalian antarvariabel. Berikut telah diberikan contoh dan noncontoh persamaan garis lurus. $$\begin{array}{cc} \hline \text{Contoh} & \text{Noncontoh} \\ \hline y = 3x + 9 & y = 3x^2 + 9 \\ 3x-2y = \sqrt7 & 3x-2\sqrt{y} = 7 \\ 9x = 10 & xy = 4 \\ \hline \end{array}$$Ada fakta menarik yang dapat diulas ketika membahas garis lurus pada bidang koordinat Kartesius, yaitu setiap dua titik berbeda dapat dibuat garis lurus. Dengan kata lain, untuk menggambar garis lurus, kita hanya perlu dua titik, kemudian menghubungkannya. Persamaan garis lurus umumnya berbentuk $ax + by + c = 0$ atau $y = mx + c$ dengan $m$ = gradien atau $ax + by = d.$ Perhatikan gambar berikut. Gambar di atas menunjukkan garis lurus dengan persamaan $ax + by + c = 0$ yang melalui dua titik, yaitu titik biru dengan koordinat $x_1, y_1$ dan titik merah dengan koordinat $x_2, y_2.$ Nah, yang menjadi pertanyaan adalah bagaimana cara mencari persamaan tersebut menentukan nilai $a, b, c$? Mungkin para guru di kelas sudah memberitahu dan menjelaskan bahwa persamaan garis lurus yang melalui dua titik tertentu, misalnya $x_1, y_1$ dan $x_2, y_2$ adalah $$\boxed{\dfrac{y-y_1}{y_2-y_1} = \dfrac{x-x_1}{x_2-x_1}}$$Selanjutnya, kita tinggal melakukan “kali silang” dan sedikit perhitungan aljabar. Oleh karena itu, kita sebut saja cara ini dengan metode aljabar. Baca Soal dan Pembahasan – Gradien dan Persamaan Garis Lurus Contoh 1 Tentukan persamaan garis lurus yang melalui titik $2, 3$ dan $5, 2.$ Metode Aljabar Dua titik yang dilalui garis adalah $x_1, y_1 = 2, 3$ dan $x_2, y_2 = 5, 2.$ $$\begin{aligned} \dfrac{y-y_1}{y_2-y_1} & = \dfrac{x-x_1}{x_2-x_1} \\ \dfrac{y-3}{2-3} & = \dfrac{x-2}{5-2} \\ \dfrac{y-3}{-1} & = \dfrac{x-2}{3} \\ 3y-3 & = -x-2 \\ 3y-9 & = -x+2 \\ x+3y & = 11 \end{aligned}$$Jadi, persamaan garisnya adalah $x+3y=11.$ Contoh 2 Tentukan persamaan garis lurus yang melalui titik $-1, 3$ dan $3, -4.$ Metode Aljabar Dua titik yang dilalui garis adalah $x_1, y_1 = -1, 3$ dan $x_2, y_2 = 3, -4.$ $$\begin{aligned} \dfrac{y-y_1}{y_2-y_1} & = \dfrac{x-x_1}{x_2-x_1} \\ \dfrac{y-3}{-4-3} & = \dfrac{x-1}{3-1} \\ \dfrac{y-3}{-7} & = \dfrac{x+1}{4} \\ 4y-3 & = -7x+1 \\ 4y-12 & = -7x-7 \\ 7x+4y & = 5 \end{aligned}$$Jadi, persamaan garisnya adalah $7x+4y=5.$ Contoh 3 Tentukan persamaan garis lurus yang melalui titik $3, 0$ dan $-1, -2.$ Metode Aljabar Dua titik yang dilalui garis adalah $x_1, y_1 = 3, 0$ dan $x_2, y_2 = -1, -2.$ $$\begin{aligned} \dfrac{y-y_1}{y_2-y_1} & = \dfrac{x-x_1}{x_2-x_1} \\ \dfrac{y-0}{-2-0} & = \dfrac{x-3}{-1-3} \\ \dfrac{y}{-2} & = \dfrac{x-3}{-4} \\ \cancelto{2}{-4}y & = \cancel{-2}x-3 \\ 2y & = x-3 \\ x-2y & = 3 \end{aligned}$$Jadi, persamaan garisnya adalah $x-2y = 3.$ Bagi orang yang baru mulai mempelajari aljabar atau belum menguasai aljabar dengan baik, langkah pengerjaan yang ditunjukkan di atas mungkin akan terasa sulit dan membingungkan. Berdasarkan pengalaman pribadi, saya sendiri sering menjadi saksi bahwa banyak siswa setingkat SMP kelas 8 ke atas yang kesulitan melakukan operasi aljabar untuk menentukan persamaan garis lurus yang melalui dua titik seperti ini. Usut punya usut, ternyata ada cara lain yang “kelihatannya” lebih menyenangkan mata dibandingkan cara di atas. Kita bakal sebut ini sebagai metode skematik karena perhitungannya nanti memang menggunakan semacam skema. Perhatikan kembali rumus sebelumnya. $$\boxed{\dfrac{y-y_1}{y_2-y_1} = \dfrac{x-x_1}{x_2-x_1}}$$Apabila kita menerapkan operasi aljabar pada persamaan tersebut, kita akan peroleh persamaan lain yang ternyata memunculkan ide baru tanpa melibatkan perhitungan aljabar yang sulit. $$\begin{aligned} y-y_1x_2-x_1 & = x-x_1y_2-y_1 \\ x_2y-x_1y-x_2y_1+\cancel{x_1y_1} & = xy_2-xy_1-x_1y_2+\cancel{x_1y_1} \\ x_2-x_1y & = y_2-y_1x + x_2y_1-x_1y_2 \end{aligned}$$Persamaan terakhirlah yang menjadi asal muasal munculnya metode skematik seperti berikut. Setelah dikurangi, langkah terakhir adalah tinggal menyisipkan variabel $y$, tanda sama dengan, dan variabel $x$ sehingga persamaannya menjadi $$\boxed{x_1-x_2\color{red}{y =} y_1-y_2\color{red}{x} + x_1y_2-x_2y_1}$$Masih bingung? Perhatikan beberapa contoh berikut supaya lebih paham. Saya menunggu kalimat “Oh, begitu rupanya!”. Quote by Napoleon Hill Most great people have attained their greatest success just one step beyond their greatest failure. Contoh 1 Tentukan persamaan garis lurus yang melalui titik $2, 3$ dan $5, 2.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $-3y = x-11$ atau dapat disusun menjadi $x+3y = 11.$ Contoh 2 Tentukan persamaan garis lurus yang melalui titik $-1, 3$ dan $3, -4.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $-4y=7x-5$ atau dapat disusun menjadi $7x+4y=5.$ Contoh 3 Tentukan persamaan garis lurus yang melalui titik $3, 0$ dan $-1, -2.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $4y = 2x-6$ atau dapat disederhanakan dan disusun menjadi $x-2y=3.$ Contoh 4 Tentukan persamaan garis lurus yang melalui titik $10, -1$ dan $-1, 10.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $11y = -11x + 99$ atau dapat disederhanakan dan disusun menjadi $x+y=9.$ Contoh 5 Tentukan persamaan garis lurus yang melalui titik $4, 7$ dan $-2, -3.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $6y = 10x + 2$ atau dapat disederhanakan dan disusun menjadi $5x-3y=-1.$ Contoh 6 Tentukan persamaan garis lurus yang melalui titik $0, 0$ dan $-4, -7.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $4y=7x$ atau dapat disusun menjadi $7x-4y=0.$ Contoh 7 Tentukan persamaan garis lurus yang melalui titik $3, 5$ dan $-9, -3.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $12y = 8x + 36$ atau dapat disederhanakan dan disusun menjadi $2x-3y=-9.$ Contoh 8 Tentukan persamaan garis lurus yang melalui titik $7, -3$ dan $-3, -2.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $10y = -x-23$ atau dapat disusun menjadi $x+10y=-23.$ Contoh 9 Tentukan persamaan garis lurus yang melalui titik $-1, -4$ dan $7, -5.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $-8y = x + 33$ atau dapat disusun menjadi $x + 8y = -33.$ Contoh 10 Tentukan persamaan garis lurus yang melalui titik $-3, -4$ dan $-3, -2.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $0y = -2x-6$ atau dapat disederhanakan dan disusun menjadi $x=-3.$ Bagaimana? Metode manakah yang lebih enak untuk dipakai? Semuanya tergantung selera masing-masing, tetapi intinya kita tahu bahwa kreativitas dan rasa “kepo” kita terhadap rumus yang lazim ternyata menghasilkan sesuatu yang “mempermudah” kita, sama seperti penggunaan mnemonik dalam proses menghafal.
LatihanSoal Menentukan Persamaan Garis Melalui Gradien dan Dua Titik. Pertama. kita tentukan dahulu gradien garis tersebut. Karena sejajar, maka gradien yang kita gunakan ke dalam rumus adalah sama. Kemudian subtitusikan nilai gradien dan titik yaitu x1 dan y1 ke dalam rumus mencari persamaan gradien. Terakhir, hitung dan akhirnya kita
Persamaan Umum Garis Lurus yang Melalui Dua TitikSecara umum persamaan garis lurus yang melalui dua titik berbeda dan yaitu  Berikut ini merupakan contoh menentukan persamaan dari suatu garis lurus *gunakan tombol NEXT and BACK untuk melihat urutan langkah-langkahnyaRumus Khusus untuk Menentukan Persamaan Garis LurusPada kasus khusus andaikan garis lurus tersebut diketahui memotong sumbu x dan sumbu y masing-masing di titik yang berbeda. Misalkan garis lurus memotong sumbu x di a,0 dan memotong sumbu y di 0,b. Maka menggunakan rumus persamaan umum garis lurus diperoleh dapat disederhanakan menjadi atau dapat ditulis sebagai Sehingga secara khusus, bila diketahui titik potong garis dengan sumbu x adalah a,0 dan titik potong sumbu y adalah 0,b, maka persamaan garisnya dapat disusun dengan lebih sederhana menggunakan rumusan Simak contoh berikut ini untuk lebih jelasnyaLATIHAN MANDIRISetelah mencermati contoh di atas, silahkan gunakan kalian berlatih secara mandiri melalui aktivitas di bawah ini. Tuliskan persamaan garis tampil pada kolom PERSAMAAN GARIS Gunakan tombol PERIKSA untuk memeriksa jawaban. Klik SOAL BARU untuk mencoba soal lain. Raih SKOR mu setinggi mungkin !Latihan Menentukan Persamaan Garis Lurus
MenentukanPersamaan Garis yang Sejajar Dengan Garis Lain dan Melalui Sebuah Titik. Penentuan gradien garis-garis yang sejajar ini adalah langkah yang harus dilakukan dalam mengetahui persamaan garis yang sejajar dengan garis lain dan melalui sebuah titik tertentu. Sehingga, konsep y - b = m(x - a) digunakan dalam kondisi ini.; Menentukan Persamaan Garis yang Tegak Lurus dengan Garis Lain dan Ov6rRe.
  • qq5zbv01ym.pages.dev/435
  • qq5zbv01ym.pages.dev/283
  • qq5zbv01ym.pages.dev/70
  • qq5zbv01ym.pages.dev/152
  • qq5zbv01ym.pages.dev/137
  • qq5zbv01ym.pages.dev/76
  • qq5zbv01ym.pages.dev/356
  • qq5zbv01ym.pages.dev/258
  • persamaan garis melalui dua titik